Abstract

PurposeThis study aims to determine the properties of a new non-toxic cutting fluid and compared with cutting fluid based on mineral oil.Design/methodology/approachThe tool wear was measured under dry and wet cutting conditions. The non-toxic cutting fluid was compared with cutting fluid based on mineral oil. The experiments were carried out using CTX 310 ECO numerical control lathe. The wear of the cutting tools was measured by means of stereo zoom microscopy (SX80), while the elements were identified through scanning electron microscopy (JSM 7100F). The workpiece surface texture was studied using a Talysurf CCI Lite non-contact 3D profiler. The contact wetting angle was established with a KSV CAM 100 tester.FindingsThe non-toxic cutting fluid has reached comparable coefficient of friction with a coolant containing mineral oil. The use of the non-toxic cutting fluid with low foaming tendency resulted in lower wear.Practical implicationsMachining processes require that cutting fluids be applied to reduce the tool wear and improve the quality of the workpiece surface. Cutting fluids serve numerous purposes such as they act as coolants and lubricants, remove chips and temporarily prevent corrosion of the product.Originality/valueThe investigations discussed in this paper have contributed to the development of non-toxic and environmentally friendly manufacturing because of the use of cutting fluid containing zinc aspartate and its comparison with commonly used cutting fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.