Abstract

Experiments were conducted to determine the influence of tonically active descending pathways on thoracolumbar spinal neurons that respond to renal nerve stimulation in anesthetized cats. We examined the effect of reversible blockade of spinal conduction on spontaneous activity, responses to renal nerve stimulation and responses to somatic stimuli of 71 spinal neurons. Mid-thoracic cold block resulted in enhanced responses (tonically inhibited neurons), reduced responses (tonically excited neurons), or did not affect neuronal responses. The spontaneous activity of 47 of 69 neurons (68%) increased from7.3 ± 2.0 spikes/s before cooling to23.3 ± 4.5 spikes/s during colling. Activity of 8 neurons (12%) decreased while 14 (20%) had no change in activity. Cooling increased the responses of 51 of 71 neurons (72%) to renal nerve stimulation. Renal nerve stimulation evoked a two-fold increase in both short latency (early) and long latency (late) responses. Four neurons had a late response which was revealed by cold block. Cooling decreased responses of 8 of 71 neurons (11%) and 9 neurons (13%) were not affected. Cooling increased the early responses but decreased the late responses of 3 of 71 neurons (4%). All neurons had somatic receptive fields and 33 of 56 exhibited increased responses to somatic stimulation during cooling. In addition, receptive field sizes of 26 neurons increased. Four neurons had a decrease and 25 neurons had no change in receptive field size during cooling. These data indicate that tonically active descending pathways modulate the activity of most spinal neurons with renal input and the major effect of these pathways is inhibitory. This influence may be important in the modulation of spinal circuits that participate in reflexes evoked by renal afferent fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call