Abstract
Tone study is very important for Mandarin speech recognition. In this paper, a Mixture Stochastic Polynomial Tone Model (MSPTM) is proposed for tone modeling in continuous Mandarin speech. In this model the pitch contour, main representative of tone pattern, is described as a mixed stochastic trajectory. The mean trajectory is represented by a polynomial function of normalized time while the variance is time varying. Effective training and tone recognition algorithms were developed. The experimental results based on the proposed MSPTM showed 40.7% tone recognition error rate reduction relative to the traditional Hidden Markov Model (HMM) tone model. We also present a decision tree based approach to learning the tone pattern variation in continuous speech. The phonetic and linguistic factors that may affect the tone patterns were taken into consideration while constructing the tree. After the tree was established, 28 different tone patterns were obtained. We found that in addition to the tone of the neighboring syllable, Consonant/Vowel type of the syllable and the position of the syllable in the utterance also made important contributions to tone pattern variations in continuous speech. Finally, a new approach of integrating tone information into the search process at word level is discussed. Experiments on continuous Mandarin speech recognition showed that the new tone model and tone information integration method were efficient, achieving a 16.2% relative character error rate reduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have