Abstract

By its direct contact with outer membrane receptor BtuB, the cytoplasmic membrane transducer TonB delivers energy that mediates cyanocobalamin uptake in Escherichia coli. This activity has been generally proposed to be the role of TonB in cyanocobalamin uptake. We now report the discovery and characterization of interactions between TonB and periplasmic binding protein BtuF. Phage display experiments predicted interaction between TonB and BtuF, identifying potential binding residues on each protein. Dynamic light scattering experiments measured a complex of 55 kDa, consistent with a TonB-BtuF heterodimer. The hydrodynamic radius of the complex was unchanged in the presence of cyanocobalamin. Surface plasmon resonance measured TonB-BtuF interaction kinetics that were independent of cyanocobalamin and that deviated from a simple binding model. Binding isotherms from intrinsic fluorescence suggested a multifaceted interaction that was independent of cyanocobalamin. In addition, the presence of TonB did not abrogate subsequent binding of cyanocobalamin by BtuF. Taken together, these data support a previously proposed model wherein TonB serves as a scaffold to optimally position BtuF for initial binding of cyanocobalamin and for its subsequent release. These results substantiate a diverse role for TonB with its multiple protein-protein interactions in bacterial nutrient uptake systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.