Abstract

The wake of a finite wall-mounted circular cylinder of diameter $D$ and height $H$ is investigated for aspect ratios $3\leq H/D \leq 7$ and boundary layer thickness of $\delta /D \approx 0.98$ using tomographic particle image velocimetry. The Reynolds number based on $D$ is $Re = 750$ . The mean wake topology is related to the evolution of the periodically shed vortices, educed from a low-order representation based on proper orthogonal decomposition of the three-dimensional velocity field. The main topological features are an arch vortex, defining the recirculating base region, and a quadrupole structure consisting of two pairs of opposite-sign vorticity concentrations extending downstream behind the obstacle-free end and wall junction. The quadrupole is the time-averaged signature of shed vortices. Vortex-tilting terms in the base region act to reorient flow-normal vorticity components streamwise, resulting in the reorientation of the ends of vortices initially shed parallel to the cylinder side walls. Through the action of the vortex-stretching terms, the bent ends connect successive vortices in a continuous chain. The influence of $H/D$ on the development of the quadrupole is characterized. The results demonstrate that the quadrupole in the mean field emerges as an imprint of the shed full-loop structures. This work reconciles mean and instantaneous interpretations satisfying the solenoidal condition on the vorticity field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.