Abstract
A spatially varying Gamma mixture model prior is employed for tomographic image reconstruction, ensuring effective noise elimination and the preservation of region boundaries. We define a line process, modeling edges between image segments, through appropriate Markov random field smoothness terms which are based on the Student’s t-distribution. The proposed algorithm consists of two alternating steps. In the first step, the mixture model parameters are automatically estimated from the image. In the second step, the reconstructed image is estimated by optimizing the maximum-a-posteriori criterion using the one-step-late expectation–maximization and preconditioned conjugate gradient algorithms. Numerical experiments on various photon-limited image scenarios show that the proposed model outperforms the compared state-of-the-art reconstruction models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.