Abstract

Healthy transplants are critical to productivity in the field. For certified organic production in the United States, seedlings must be grown in media that meet the standards of the US Department of Agriculture’s National Organic Program. Many commercial organic media options are available, they vary substantially in composition, and it is unknown to what extent this influences seedling performance. This project compared tomato (Solanum lycopersicum L.) seedling emergence and growth in seven commercially available media for organic production and evaluated posttransplant performance. Tomato seedlings were grown in greenhouses at Wanatah, West Lafayette, and Vincennes, IN, USA. Chemical characteristics of the media measured in saturated media extract ranged as follows: pH 5.2–7.5; electrical conductivity (EC) 0.79–4.68 dS·m−1; 1–332 ppm nitrate-nitrogen, 5–69 ppm phosphorus, 41–451 ppm potassium, 78–714 ppm calcium, and 25–121 ppm magnesium. Higher media EC was associated with slower and less uniform seedling emergence and reduced total emergence. Seedling aboveground dry weights were significantly greater in media that contained compost. Relative performance in media containing compost varied across trials. The aboveground dry weight of tomato seedlings 4 weeks after transplanting did not differ for seedlings started in the five compost-based media, and those plants were significantly larger than plants started in the two media without compost. Larger plants tended to flower and set fruit earlier. Media testing protocols that predict nutrient supply over the production cycle could likely improve management in organic transplant production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call