Abstract
Effective nutrient and irrigation management practices are critical for optimum growth and yield in open-field fresh-market tomato production. Although nutrient and irrigation management practices have been well-studied for tomato production in Florida, more studies of the current highly efficient production systems would be considered essential. Therefore, a two-season (Fall 2016 and Spring 2017) study was conducted in Immokalee, FL, to evaluate the effects of the nitrogen (N) rates under different irrigation regimes and to determine the optimum N requirement for open-field fresh-market tomato production. To evaluate productivity, the study investigated the effects of N rates and irrigation regimes on plant and root growth, yield, and production efficiency of fresh-market tomato. The study demonstrated that deficit irrigation (DI) targeting 66% daily evapotranspiration (ET) replacement significantly increased tomato root growth compared with full irrigation (FI) at 100% ET. Similarly, DI application increased tomato growth early in the season compared with FI. Therefore, irrigation applications may be adjusted downward from FI, especially early during a wet season, thereby potentially improving irrigation water use efficiency (iWUE) and reducing leaching potential of Florida sandy soils. However, total marketable yield significantly increased under FI compared with DI. This suggests that although DI may increase early plant growth, the application of DI throughout the season may result in yield reduction. Although N application rates had no significant effects on biomass production, tomato marketable yield with an application rate of 134 kg·ha−1 N was significantly lower compared with other N application rates (179, 224, and 269 kg·ha−1). It was also observed that there were no significant yield benefits with N application rates higher than 179 kg·ha−1. During the fall, iWUE was higher under DI (33.57 kg·m−3) than under FI (25.57 kg·m−3); however, iWUE was similar for both irrigation treatments during spring (FI = 14.04 kg·m−3; DI = 15.29 kg·m−3). The N recovery (REC-N) rate was highest with 134 kg·ha−1 N; however, REC-N was similar with 179, 224, and 269 kg·ha−1 N rates during both fall and spring. Therefore, these study results could suggest that DI could be beneficial to tomato production only when applied during early growth stages, but not throughout the growing season. Both yield and efficiency results indicated that the optimum N requirement for open-field fresh-market tomato production in Florida may not exceed 179 kg·ha−1 N.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have