Abstract

Protein-tyrosine kinase Lyn and Syk are critical for antigen-receptor-induced signal transduction in mast cells. To identify novel Lyn/Syk substrates, we screened an RBL-2H3 bacterial expression library for proteins that were tyrosine phosphorylated with baculoviral expressed Lyn or Syk. Five clones as potential Lyn substrates and eight clones as Syk substrates were identified including known substrates such as SLP-76, LAT, and alpha-tubulin. A potential substrate of Lyn identified was the molecule TOM1L1, which has several domains thought to be important for membrane trafficking and protein-protein interactions. Because the function of TOM1L1 is unclear, the rat TOM1L1 full-length cDNA was isolated and used to express the protein in COS-1 and RBL-2H3 mast cells. In COS-1 cells, the co-transfection of TOM1L1 and Lyn, but not Syk, resulted in the tyrosine phosphorylation of TOM1L1. In RBL-2H3 mast cells, the overexpressed TOM1L1 was strongly tyrosine phosphorylated in non-stimulated cells, and this phosphorylation was enhanced by FcepsilonRI aggregation. By subcellular fractionation, wild-type TOM1L1 was mainly in the cytoplasm with a small fraction constitutively associated with the membrane; this association was markedly reduced in deletion mutants lacking several of the protein interaction domains. The overexpression of TOM1L1 enhanced antigen-induced tumor necrosis factor (TNF) alpha generation and release. Both protein interaction domains (VHS and the coiled-coil domains) were required for the increased TNFalpha release, but not the increased TNFalpha generation. These results suggest that TOM1L1 is a novel protein involved in the FcepsilonRI signal transduction for the generation of cytokines.

Highlights

  • The aggregation of the high affinity IgE receptor (Fc⑀RI) on mast cells and basophils activates multiple signaling pathways that lead to degranulation and the release of mediators of allergic reactions

  • These results suggested that TOM1L1 is a novel Lyn substrate, and is involved in the Fc⑀RI signaling in mast cells

  • Conceptual translation showed that each clone, except S15, contained an insert that corresponded to a partial cDNA with an open reading frame

Read more

Summary

Introduction

The aggregation of the high affinity IgE receptor (Fc⑀RI) on mast cells and basophils activates multiple signaling pathways that lead to degranulation and the release of mediators of allergic reactions. To identify novel substrates of Lyn and Syk, we used a recently described genetic method for screening a cDNA expression library for proteins that were tyrosine phosphorylated in vitro by these kinases [23].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.