Abstract

Systemic lupus erythematosus (SLE) is characterized by the production of autoantibodies that are frequently directed against nucleic acid-associated antigens. To better understand how B cells reactive with such antigens are regulated, we generated a model system in which heavy and light chain genes encoding 564 immunoglobulin have been targeted to the heavy and light chain loci of the nonautoimmune C57BL/6 mouse strain. This antibody recognizes RNA, single-stranded DNA, and nucleosomes. We show that B cells expressing this immunoglobulin were activated, producing class-switched autoantibody in vivo despite the apparently normal induction of anergy. This autoantibody production was largely dependent on Toll-like receptor 7 (TLR7). We further show that production of these autoantibodies was sufficient to cause kidney pathology in these mice. These results demonstrate that the particular threat of nucleic acid-containing autoantigens lies in their ability to bind both antigen receptor and TLR7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.