Abstract

Information on tolerances and attributes of mechanical parts and assemblies is crucial for many activities in a product’s life cycle. Tolerance design is a complex task because many factors (functional, technological and economical) should be considered. It is an iterative process, starting from a first tolerances assignment and ending with the definition of their optimal values. Once all tolerances have been assigned to each part of an assembly, tolerance analysis is performed. This stage aim is to evaluate if the combined effects of the assigned tolerances let the design requirements be met. Then, feasible and economical aspects are considered on the basis of both available processes and cost evaluations. The whole tolerance design stage is usually defined as tolerance synthesis. The focus of this work is the discussion of the algorithms to model the geometrical variations, of each part of an assembly, allowed by geometric tolerances. This involves the change of the boundary nominal representation of a part face on the basis of the assigned dimensional and geometric tolerances. At present, the developed algorithms are able to simulate flatness, location and orientation. The modified parts, generated by tolerance simulation, may be used to evaluate the overall assemblability and, then, to verify the assembly functional requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call