Abstract

Tolerance is one of the most important parameters in product and process design, so tolerancing plays a key role in design and manufacturing. Tolerance synthesis is in a period of extensive study due both to increased demands for quality products and to increasing automation of machining and assembly. Optimum tolerance design and synthesis ensures good quality product at low cost. This paper presents an analytical methodology for tolerance analysis and synthesis for a disk cam-translating follower system. Both dimensional ( size) and geometric tolerances ( position and profile ) on the components are considered. Tolerance analysis is performed on individual tolerances as well as on total tolerance accumulation. With the lowest manufacturing cost as its objective function a nonlinear optimization model is formulated for tolerance synthesis and solved by a sequential quadratic programming ( SQP) algorithm. An example is provided to illustrate the optimization model and solution procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call