Abstract
Shallow-water communities along the western Antarctic Peninsula support forests of large, mostly chemically defended macroalgae and dense assemblages of macroalgal-associated amphipods, which are thought to exist together in a community-wide mutualism. The amphipods benefit the chemically defended macrophytes by consuming epiphytic algae and in turn benefit from an associational refuge from fish predation. In the present study, we document an exception to this pattern. The amphipod Paradexamine fissicauda is able to consume Plocamium carti- lagineum and Picconiella plumosa, 2 species of sympatric, chemically defended red macroalgae. In previous studies, Plocamium cartilagineum was one of the most strongly deterrent algae in the community to multiple consumers, and was found here to be unpalatable to 5 other amphipod spe- cies which utilize it as a host in nature. Paradexamine fissicauda maintained on a diet of Ploca - mium cartilagineum for 2 mo were much less likely to be eaten by fish than Paradexamine fissi- cauda maintained on a red alga which does not elaborate chemical defenses, or than a different but morphologically similar sympatric amphipod species. Halogenated secondary metabolites pro- duced by Plocamium cartilagineum were identified from tissues of the Paradexamine fissicauda that had eaten it but not those which had eaten the undefended red alga. This indicates that P. fissi- cauda is sequestering the potent chemical defenses of Plocamium cartilagineum for its own use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.