Abstract

PurposeThe purpose of this paper is to develop a novel multi‐objective optimization algorithm which takes into account the uncertainty in design parameters by using a reduced resolution for their representation, thus implementing a simple form of robustness. Additionally, the number of function evaluations should be minimized.Design/methodology/approachThe proposed approach is based on an elitist evolutionary algorithm coupled with a reduction in the number of significant figures used to represent design parameters. In effect, this becomes a filter in the optimization process and allows the system to avoid extremely sharp optima within the search space. By reducing the resolution of the search and maintaining a full archive of previous solutions, the number of evaluations of the objective functions, each of which may require an expensive numerical solution, is reduced.FindingsThe algorithm was tested both on an algebraic test function and on two TEAM Workshop Problems (22 and 25). The results demonstrated that it is stable; can emerge from deceptive fronts; and find optimal solutions which match those previously published at a relatively low‐computational cost.Originality/valueThe originality of this paper lies in the concept of using a low‐resolution representation of the design parameters. This results in a finite size search space and increases the speed of the algorithm while avoiding non‐manufacturable solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.