Abstract

Key information extraction from unstructured documents is a practical problem in many industries. Machine learning models aimed at solving this problem should efficiently utilize textual, visual, and 2D spatial layout information of the document. Grid based approaches achieve this by representing the document as a 2D grid and feeding it to a fully convolutional encoder-decoder network that solves a semantic instance segmentation problem. We propose a new method for the instance detection branch of that network for the task of automatic information extraction from invoices. Our approach reduces this problem to 1D region detection. The proposed network has fewer parameters and a shorter inference times. Additionally, we suggest a new metric for evaluating the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.