Abstract

Gradient-based adversarial training is widely used in improving the robustness of neural networks, while it cannot be easily adapted to natural language processing tasks since the embedding space is discrete. In natural language processing fields, virtual adversarial training is introduced since texts are discrete and cannot be perturbed by gradients directly. Alternatively, virtual adversarial training, which generates perturbations on the embedding space, is introduced in NLP tasks. Despite its success, existing virtual adversarial training methods generate perturbations roughly constrained by Frobenius normalization balls. To craft fine-grained perturbations, we propose a Token-Aware Virtual Adversarial Training method. We introduce a token-level accumulated perturbation vocabulary to initialize the perturbations better and use a token-level normalization ball to constrain these perturbations pertinently. Experiments show that our method improves the performance of pre-trained models such as BERT and ALBERT in various tasks by a considerable margin. The proposed method improves the score of the GLUE benchmark from 78.3 to 80.9 using BERT model and it also enhances the performance of sequence labeling and text classification tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.