Abstract
Adversarial Training (AT) and Virtual Adversarial Training (VAT) are the regularization techniques that train Deep Neural Networks (DNNs) with adversarial examples. In this paper, we propose xAT and xVAT that generate \textbf{multiplicative} perturbations to input examples for robust training of DNNs. Such perturbations are much more perceptible and interpretable than their \textbf{additive} counterparts exploited by AT and VAT. Furthermore, the multiplicative perturbations can be generated transductively or inductively while the standard AT and VAT only support a transductive implementation. We conduct a series of experiments that analyze the behavior of the multiplicative perturbations and demonstrate that xAT and xVAT can achieve competitive classification accuracies across multiple established benchmarks while being about 30\% faster than their additive counterparts. Furthermore, the resulting DNNs also demonstrate distinct weight distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.