Abstract

Toroidal rotation can be produced by disruptions, as observed in several experiments. There is a concern that rotating asymmetric forces during an ITER disruption might resonate with the blanket and other structures surrounding the plasma. Here it is shown, both computationally using the M3D code, and analytically, that toroidal rotation is produced by magnetohydrodynamic turbulence. In particular, rotation is produced during an asymmetric vertical displacement event (AVDE) disruption. Toroidal and poloidal rotation are also produced during edge localized modes (ELMs), and may be consistent with a scaling law found for intrinsic toroidal rotation in H-mode tokamaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call