Abstract

Geometrically well-defined patterns of surface-immobilized proteins can be produced with several methods. We developed a method for patterning of proteins by means of specific, non-covalent interactions between a protein and a metal complex immobilized at the surface. In particular, reproducible patterns of lactoferrin have been obtained by exploiting the different adsorption properties of this protein on a OH-terminated self-assembled monolayer (SAM) or onto an iron-containing SAM present in certain regions of the pattern. The OH-terminated SAM was etched with a focused ion beam (FIB) in order to produce square regions of bare gold. These regions were selectively covered with a SAM of iron–terpyridine complex, formed via a stepwise procedure involving the initial formation of a mixed component SAM (containing the terpyridine ligand) and the subsequent reaction with an iron(II) salt in order to produce the complex. The patterned substrate was finally allowed to interact with a lactoferrin solution. It is shown that lactoferrin selectively and stably adsorbs on iron-containing layers, whereas it is not retained on the OH-terminated regions of the surface. The use of ToF-SIMS was crucial for obtaining this information, as well as for monitoring each sequential step necessary for the preparation of the patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.