Abstract

Silicon nitride as an energy efficient material is replacing conventional steels for new generation engineering components such as bearings, cutting tools, electronics and engine parts in automotive, aerospace and wind industries. Compared with steel bearings, silicon nitride bearings can be operated at much higher temperatures and speeds with >60% weight reduction and up to 80% friction reduction. These are all due to its unique material properties, including high wear and corrosion resistance, low density and heat generation. Current lubrication solutions for hybrid contacts, where silicon nitride balls and steel races are used, are mostly relying on the protection film formed on the metal surfaces. Self-assembled monolayers (SAMs) have been found very useful in modifying surfaces, especially for microelectromechanical system and nanoscale applications, e.g. atomic force microscopy tips, etc. This study aims to investigate the feasibility of forming a SAM protection film on industrial grade bearing material silicon nitride to reduce the friction for the oil lubricated hybrid contacts. Four silanes with different functional head groups, including octadecyltrichlorosilane (OTS), octyltrichlorosilane, chlorodimethyloctadecylsilane and octadecyltrimethoxysilane, were initially investigated to form SAMs on industrial grade silicon nitride surfaces. The effects of concentration and immersion time of the silanes on the formation of SAMs on the silicon nitride surface were evaluated using contact angle measurements. The preliminary results show that the wetting properties of the silicon nitride surface can be effectively modified by the formation of SAMs from the silane solutions. OTS can form an order and compact SAM on the silicon nitride surfaces within 2 min at the concentration of 2··5 mM in decane solution, while the other three alkylsilanes can also effectively modify silicon nitride surfaces given sufficient immersion time, e.g. over 1 h. Tribological tests were subsequently carried out on a ball on disc rig where a steel ball and a silicon nitride disc were used. The effect of the formation of alkylsilane SAMs on the friction between the sliding contacts has been evaluated in two different methods. The first method was to test preformed SAM films under dry conditions, and the second was to premix one of the surfactants with Shell Vitrea ISO 32 mineral base oil and then spray the mixture to the contacts during the ball on disc testing. The test results show that an average of over 40 and 30% friction reduction was achieved for the hybrid contact when lubricated with the base oil mixed with OTS (>2··5 mM) and octadecyltrimethoxysilane (5 mM) respectively compared with that of the sliding contact lubricated by the base oil only. Since OTS may produce corrosive byproducts during SAM formation, octadecyltrimethoxysilane may be a more suitable additive for the hybrid contacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.