Abstract
AbstractDNA is increasingly used to engineer dynamic nanoscale circuits, structures, and motors, many of which rely on DNA strand‐displacement reactions. The use of functional DNA sequences (e.g., aptamers, which bind to a wide range of ligands) in these reactions would potentially confer responsiveness on such devices, and integrate DNA computation with highly varied molecular stimuli. By using high‐throughput single‐molecule FRET methods, we compared the kinetics of a putative aptamer–ligand and aptamer–complement strand‐displacement reaction. We found that the ligands actively disrupted the DNA duplex in the presence of a DNA toehold in a similar manner to complementary DNA, with kinetic details specific to the aptamer structure, thus suggesting that the DNA strand‐displacement concept can be extended to functional DNA–ligand systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have