Abstract
Transformations of the measure of orthogonality for orthogonal polynomials, namely Freud transformations, are considered. Jacobi matrix of the recurrence coefficients of orthogonal polynomials possesses an isospectral deformation under these transformations. Dynamics of the coefficients are described by generalized Toda equations. The classical Toda lattice equations are the simplest special case of dynamics of the coefficients under the Freud transformation of the measure of orthogonality. Also dynamics of Hankel determinants, its minors and other notions corresponding to the orthogonal polynomials are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.