Abstract

It is known from [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.] that the recurrence coefficients of discrete orthogonal polynomials on the nonnegative integers with hypergeometric weights satisfy a system of nonlinear difference equations. There is also a connection to the solutions of the [Formula: see text]-form of the sixth Painlevé equation (one of the parameters of the weights being the independent variable in the differential equation) [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.]. In this paper, we derive a second-order nonlinear difference equation from the system and present explicit formulas showing how this difference equation arises from the Bäcklund transformations of the sixth Painlevé equation. We also present an alternative way to derive the connection between the recurrence coefficients and the solutions of the sixth Painlevé equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call