Abstract
Development of accurate machine-learning-based scoring functions (MLSFs) for structure-based virtual screening against a given target requires a large unbiased dataset with structurally diverse actives and decoys. However, most datasets for the development of MLSFs were designed for traditional SFs and may suffer from hidden biases and data insufficiency. Hereby, we developed a new approach named Topology-based and Conformation-based decoys generation (TocoDecoy), which integrates two strategies to generate decoys by tweaking the actives for a specific target, to generate unbiased and expandable datasets for training and benchmarking MLSFs. For hidden bias evaluation, the performance of InteractionGraphNet (IGN) trained on the TocoDecoy, LIT-PCBA, and DUD-E-like datasets was assessed. The results illustrate that the IGN model trained on the TocoDecoy dataset is competitive with that trained on the LIT-PCBA dataset but remarkably outperforms that trained on the DUD-E dataset, suggesting that the decoys in TocoDecoy are unbiased for training and benchmarking MLSFs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have