Abstract

Carrageenans represent a major cell wall component of red macro algae and, as established gelling and thickening agents, they contribute significantly to a broad variety of commercial applications in the food and cosmetic industry. As a highly sulfated class of linear polysaccharides, their functional properties are strongly related to the sulfation pattern of their carrabiose repeating units. Therefore, the biocatalytic fine-tuning of these polymers by generating tailored sulfation architectures harnessing the hydrolytic activity of sulfatases could be a powerful tool to produce novel polymer structures with tuned properties to expand applications of carrageenans beyond their current use. To contribute to this vision, we sought to identify novel carrageenan sulfatases by studying several putative carrageenolytic clusters in marine heterotrophic bacteria. This approach revealed two novel formylglycine-dependent sulfatases from Cellulophaga algicola DSM 14237 and Cellulophaga baltica DSM 24729 with promiscuous hydrolytic activity towards the sulfated galactose in the industrially established ι- and κ-carrageenan, converting them into α- and β-carrageenan, respectively, and enabling the production of a variety of novel pure and hybrid carrageenans. The rheological analysis of these enzymatically generated structures revealed significantly altered physicochemical properties that may open the gate to a variety of novel carrageenan-based applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call