Abstract

Marine biomass stands out as a sustainable resource for generating value-added chemicals. In particular, anhydrosugars derived from carrageenans exhibit a variety of biological functions, rendering them highly promising for utilization and cascading in food, cosmetic, and biotechnological applications. However, the limitation of available sulfatases to break down the complex sulfation patterns of carrageenans poses a significant limitation for the sustainable production of valuable bioproducts from red algae. In this study, we screened several carrageenolytic polysaccharide utilization loci for novel sulfatase activities to assist the efficient conversion of a variety of sulfated galactans into the target product 3,6-anhydro-D-galactose. Inspired by the carrageenolytic pathways in marine heterotrophic bacteria, we systematically combined these novel sulfatases with other carrageenolytic enzymes, facilitating the development of the first enzymatic one-pot biotransformation of ι- and κ-carrageenan to 3,6-anhdyro-D-galactose. We further showed the applicability of this enzymatic bioconversion to a broad series of hybrid carrageenans, rendering this process a promising and sustainable approach for the production of value-added biomolecules from red-algal feedstocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.