Abstract

Tumor necrosis factor (TNF)-α, a key mediator of intestinal inflammation, causes an increase in intestinal epithelial tight junction (TJ) permeability by activating myosin light chain kinase (MLCK; official name MYLK3) gene. However, the precise signaling cascades that mediate the TNF-α-induced activation of MLCK gene and increase in TJ permeability remain unclear. Our aims were to delineate the upstream signaling mechanisms that regulate the TNF-α modulation of intestinal TJ barrier function with the use of invitro and invivo intestinal epithelial model systems. TNF-α caused a rapid activation of both canonical and noncanonical NF-κB pathway. NF-κB-inducing kinase (NIK) and mitogen-activated protein kinase kinase-1 (MEKK-1) were activated in response to TNF-α. NIK mediated the TNF-α activation of inhibitory κB kinase (IKK)-α, and MEKK1 mediated the activation of IKK complex, including IKK-β. NIK/IKK-α axis regulated the activation of both NF-κB p50/p65 and RelB/p52 pathways. Surprisingly, the siRNA induced knockdown of NIK, but not MEKK-1, prevented the TNF-α activation of both NF-κB p50/p65 and RelB/p52 and the increase in intestinal TJ permeability. Moreover, NIK/IKK-α/NF-κB p50/p65 axis mediated the TNF-α-induced MLCK gene activation and the subsequent MLCK increase in intestinal TJ permeability. In conclusion, our data show that NIK/IKK-α/regulates the activation of NF-κB p50/p65 and plays an integral role in the TNF-α-induced activation of MLCK gene and increase in intestinal TJ permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call