Abstract

Abstract Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain cancer glioblastoma (GBM), yet treatment durability remains a major challenge. We sought to define the events that contribute to dynamic adaption of GBM during NSC treatment and develop strategies to convert initial tumor kill into sustained GBM suppression. Using a unique hybrid tumor model treated with human skin-derived induced NSCs (iNSCs) releasing the pro-apoptotic agent TRAIL, we investigated how spatial distribution of tumor and iNSCs affects GBM adaption throughout recurrence. Serial bioluminescent imaging (BLI) was used to track tumor volumes in vivo, while a subset of mice were sacrificed 6, 13, and 20 days post-treatment to harvest brains and generate living ex vivo tissue slices. Live animal imaging showed iNSC-TRAIL treatment rapidly decreased tumor volumes when delivered into the primary tumor mass; however, minimal impact on tumor growth was observed when cells were delivered into distal regions of the brain. In contrast, high-resolution imaging of living brain sections showed extensive impacts of iNSC-TRAIL therapy that could not be visualized with BLI. The living slices showed iNSC-TRAIL treatment into the primary tumor decreased the solid, but not the invasive, tumor burden. Treatment into the lateral ventricles did impact tumor kill and was more effective at treating the invasive tumor burden and maintaining inhibition than treatment into the contralateral parenchyma. We next utilized the living tissue slices to explore the sensitivity of the recurrent tumors to TRAIL. When therapy was applied to slices harboring recurrent tumor, treatment again significantly reduced tumor volumes, suggesting that tumors had not acquired TRAIL resistance. These results informed an additional in vivo survival study and subsequent PCR analysis of untreated and recurrent tumors, and combine the fidelity of in vivo studies with the speed and spatial resolution of living brain slice technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call