Abstract

Atypical Teratoid Rhabdoid Tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered three molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multi-omics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and PLK1. We identified two classes of multi-kinase inhibitors (MKIs) predominantly targeting receptors tyrosine kinase (RTKs) including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. Taken together our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call