Abstract

Sympathetic nerve hyperactivity is a primary reason for fatal ventricular arrhythmias (VAs) following myocardial infarction (MI). Pro-inflammatory cytokines produced in the paraventricular nucleus (PVN) post-MI are associated with sympathetic overexcitation; however, the precise mechanism needs further investigation. Our aim was to explore the mechanism of toll-like receptor 4 (TLR4) and its downstream molecular pathway in mediating sympathetic activity post-MI within the PVN. A rat MI model was developed via left anterior descending coronary artery ligation. TLR4 was primarily localized in microglia and increased markedly within the PVN at 3 days in MI rats. Sympathoexcitation also increased, as indicated by high levels of renal sympathetic nerve activity (RSNA) and norepinephrine (NE) concentration. TLR4 knockdown via shRNA microinjection to the PVN resulted in decreased activation of Fos protein (+) neurons in the PVN and peripheral sympathetic nerve activity. TLR4 knockdown also exhibited a lower arrhythmia score following programmed electrical stimulation than those treated with MI surgery only, indicating that the knockdown of TLR4 decreased the incidence of malignant ventricular arrhythmias following MI. LPS-induced inflammatory response was analyzed to explore the underlying mechanism of TLR4 in sympathetic hyperactivity. High levels of NF-κB protein, the pro-inflammatory cytokines IL-1β and TNF-α, and ROS production were observed in the LPS group. PVN-targeted injection of the NF-κB inhibitor PDTC attenuated NF-κB expression and sympathetic activity. Taken together, the results suggested that knockdown of microglial TLR4 within the PVN decreased sympathetic hyperactivity and subsequent VAs post-MI. The downstream NF-κB pathway and ROS production participated in the process. Interventions targeting TLR4 signaling in the PVN may be a novel approach to ameliorate the incidence of VAs post-MI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.