Abstract
AbstractCytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODNs) are synthetic ODNs with unmethylated DNA sequences that mimic viral and bacterial DNA and protect against infectious agents and tumor challenge. We show that CpG ODNs markedly accelerated graft-versus-host disease (GVHD) lethality by Toll-like receptor 9 (TLR9) ligation of host antigen-presenting cells (APCs), dependent upon host IFNγ but independent of host IL-12, IL-6, or natural killer (NK) cells. Imaging studies showed significantly more green fluorescent protein–positive (GFP+) effector T cells in lymphoid and nonlymphoid organs. In engraftment studies, CpG ODNs promoted allogeneic donor bone marrow (BM) rejection independent of host IFNγ, IL-12, or IL-6. During the course of these studies, we uncovered a previously unknown and critical role of donor BM APCs in modulating the rejection response. CpG ODNs promoted BM rejection by ligation of donor BM, but not host, TLR9. CpG ODNs did not impair engraftment of TLR9−/− BM unless wild-type myeloid (CD11b+) but not B-lineage (CD19+) BM cells were added to the donor inoculum. The importance of donor BM APCs in modulating the strength of the host antidonor rejection response was underscored by the finding that B7-1/B7-2−/− BM was less likely than wild-type BM to be rejected. Collectively, these data offer new insight into the mechanism of alloresponses regulating GVHD and BM rejection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.