Abstract
Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR). The T regulatory (Treg) cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficient for the suppression of airway inflammation in experimental allergic asthma. Intervention strategies aimed at expanding the Treg cell population locally in the airways of sensitized individuals are therefore of high interest as a potential therapeutic treatment for allergic airway disease. Here, we aim to test whether long-term suppression of asthma manifestations can be achieved by locally expanding the Treg cell subset via intranasal administration of a TLR-2 agonist. To model therapeutic intervention aimed at expanding the endogenous Treg population in a sensitized host, we challenged OVA-sensitized mice by OVA inhalation with concomitant intranasal instillation of the TLR-2 agonist Pam3Cys, followed by an additional series of OVA challenges. Pam3Cys treatment induced an acute but transient aggravation of asthma manifestations, followed by a reduction or loss of AHR to methacholine, depending on the time between Pam3Cys treatment and OVA challenges. In addition, Pam3Cys-treatment induced significant reductions of eosinophils and increased numbers of Treg cells in the lung infiltrates. Our data show that, despite having adverse acute effects, TLR2 agonist treatment as a therapeutic intervention induces an expansion of the Treg cell population in the lungs and results in long-term protection against manifestation of allergic asthma upon subsequent allergen provocation. Our data indicate that local expansion of Tregs in allergic airway disease is an interesting therapeutic approach that warrants further investigation.
Highlights
Allergic asthma is an inflammatory disease characterized by airway hyperresponsiveness (AHR) to bronchospasmogenic compounds, elevated allergen-specific IgE serum levels and chronic airway eosinophilia
It has been reported that T regulatory (Treg) cells express Tolllike receptor-2 (TLR-2) and that TLR-2 signaling induced by Pam3Cys at the time of TCRmediated Treg cell activation results in Treg proliferation, both in vitro and in vivo [17]
Severity of allergic inflammation and AHR in allergic asthma are tightly correlated to the activity of Treg cells, and therapeutic strategies aimed at inducing the expansion of endogenous allergenspecific Treg populations are an attractive future alternative for current treatment options [4,5]
Summary
Allergic asthma is an inflammatory disease characterized by airway hyperresponsiveness (AHR) to bronchospasmogenic compounds, elevated allergen-specific IgE serum levels and chronic airway eosinophilia. Adoptive transfer of Treg cells into allergensensitized mice down-regulates asthma manifestations [1], while depletion of these cells exacerbates experimental asthma [2,3]. These data identify Treg cells as a potentially relevant target for therapeutic intervention in allergic asthma and Treg cell-based therapies are currently being considered for the treatment of this complex disease [4]. Expansion of the endogenous Treg cell population in allergen sensitized individuals is a more attractive approach than adoptive transfer of ex vivo expanded Treg cell subsets [5]. One possible approach to expand the allergen-specific Treg cell subset in vivo is the triggering of Tolllike receptor-2 (TLR-2) in the presence of antigen presentation [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.