Abstract

Virtual Prototypes (VPs) based on Transaction Level Modeling (TLM) have become a de-facto standard in today's SoC design, enabling early SW development. However, due to the growing complexity of SoC architectures full system simulations (HW+SW) become a bottleneck reducing this benefit. Hence, it is necessary to develop modeling styles which allow for further abstraction beyond the currently applied TLM methodology. This paper introduces such a modeling style, referred to as TLM+. It enables a higher modeling abstraction through merging hardware dependent driver software at the lowest level with the HW interface. Thus, sequences of HW transactions can be merged to single HW/SW transactions while preserving both the HW architecture and the low-level to high-level SW interfaces. In order to maintain the ability to validate timing-critical paths, a new resource model concept is introduced which compensates the loss of timing information, induced by merging HW transactions. Experimental results show a speed-up of up to 1000x at a timing error of approximately 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call