Abstract

BackgroundOverexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. Furthermore, enhanced TKTL1 expression was put into context with resistance to chemotherapy and ionizing radiation. Here, a panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression.Methods17 malign and three benign cell lines were characterized according to their expression of TKTL1 on the protein level with three commercially available anti-TKTL1 antibodies utilizing immunohistochemistry and Western blot, as well as on mRNA level with three published primer pairs for RT-qPCR. Furthermore, sensitivities to paclitaxel, cisplatin and ionizing radiation were assessed in cell survival assays. Glucose consumption and lactate production were quantified as surrogates for the “Warburg effect”.ResultsConsiderable amounts of tktl1 mRNA and TKTL1 protein were detected only upon stable transfection of the human embryonic kidney cell line HEK293 with an expression plasmid for human TKTL1. Beyond that, weak expression of endogenous tktl1 mRNA was measured in the cell lines JAR and U251. Western blot analysis of JAR and U251 cells did not detect TKTL1 at the expected size of 65 kDa with all three antibodies specific for TKTL1 protein and immunohistochemical staining was observed with antibody JFC12T10 only. All other cell lines tested here revealed expression of tktl1 mRNA below detection limits and were negative for TKTL1 protein. However, in all cell lines including TKTL1-negative HEK293-control cells, antibody JFC12T10 detected multiple proteins with different molecular weights. Importantly, JAR and U251 did neither demonstrate an outstanding production of lactic acid nor increased resistance against chemotherapeutics or to ionizing radiation, respectively.ConclusionUsing RT-qPCR and three different antibodies we observed only exceptional occurrence of TKTL1 in a panel of malignant human cell lines in vitro. The presence of TKTL1 was unrelated to either the rate of glucose consumption/lactic acid production or resistance against chemo- and radiotherapy.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-15-2) contains supplementary material, which is available to authorized users.

Highlights

  • Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production

  • TKTL1-negative human embryonic kidney cells HEK293 have been stably transfected with the expression plasmid pCAG or with a pCAG-based TKTL1 expression plasmid, which resulted in strong expression of the protein, as described elsewhere [21]

  • Immunohistochemical staining with JFC12T10 and Sigma Prestige antibodies showed a strong cytoplasmatic staining in HEK293-TKTL1 transfectants, with an additional nuclear staining by the Sigma Prestige polyclonal antibody

Read more

Summary

Introduction

Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. A panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression. A genomic-wide screen revealed a new gene identified in embryonic brain and heart tissue, located on the Xq28 region next to genes of cancer/testis antigens (CTA). This gene was termed TKT-related (TKR) gene [6]. The TKTL1 gene has been found especially in human testis tissue during germ cell maturation and in corresponding seminal plasma of fertile donors, a finding consistent with the CTA location of the gene [9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call