Abstract

Titin, an extraordinary protein known for its colossal size and multifaceted roles, is a cornerstone in the structural and functional dynamics of striated muscle tissues, including the heart and skeletal muscles. Its sheer enormity, with a molecular weight exceeding 3000 kDa, is paralleled only by the immense influence it exerts on muscle physiology. This review will delve into the remarkable structural organization of Titin and the genetics of this molecule, including the common mutations resulting in various cardiomyopathies. We will delve deeper into its role in dilated cardiomyopathy, familial restrictive cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction cardiomyopathy. This review culminates by discussing the prospects of therapeutic strategies targeting Titin. While these interventions remain primarily theoretical, the possibilities are intriguing. Patients with Titin truncation mutations present unique challenges, but innovative approaches like gene therapy or preemptive treatments with drugs such as angiotensin-converting enzyme inhibitors or beta-blockers offer hope. This multi-pronged approach highlights the significance of understanding Titin’s multifaceted role and its potential as a target for future therapeutic interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call