Abstract

Amorphous hydrogenated carbon (a-C : H) coatings, also called diamond-like carbon (DLC), have many properties required for a protective coating material in biomedical applications. The purpose of this study is to evaluate a new surface coating for bone-related implants by combining the hardness and inertness of a-C : H films with the biological acceptance of titanium. For this purpose, different amounts of titanium were incorporated into a-C : H films by a combined radio frequency (rf) and magnetron sputtering set-up. The X-ray photoelectron spectroscopy (XPS) of air-exposed a-C : H/titanium (a-C : H/Ti) films revealed that the films were composed of TiO 2 and TiC embedded in and connected to an a-C : H matrix. Cell culture tests using primary adult rat bone marrow cell cultures (BMC) were performed to determine effects on cell number and on osteoblast and osteoclast differentiation. By adding titanium to the carbon matrix, cellular reactions such as increased proliferation and reduced osteoclast-like cell activity could be obtained, while these reactions were not seen on pure a-C : H films and on glass control samples. In summary, a-C : H/Ti could be a valuable coating for bone implants, by supporting bone cell proliferation while reducing osteoclast-like cell activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.