Abstract

To propose a biofunctionalized prosthetic abutment by analyzing physico-chemical and morphological properties, simvastatin (SIM) release, and biocompatibility of titanium (Ti) disks coated with poly(lactic-co-glycolic) acid (PLGA) incorporating SIM. Titanium disks (8×3mm) were distributed into four groups: Ti: pure Ti; Ti+PLGA: Ti coated with PLGA; Ti+PLGA+SIM6%: Ti+PLGA with 6% SIM; and Ti+PLGA+SIM0.6%: Ti+PLGA incorporating 0.6% SIM. PLGA was prepared through chloroform evaporation technique. After complete dissolution of PLGA, SIM was diluted in the solution. Ti+PLGA, Ti+PLGA+SIM6%, and Ti+PLGA+SIM0.6% were dip coated with PLGA and PLGA+SIM, respectively. Samples were sterilized by ethylene oxide. For SIM release assay, disks were submerged in PBS, pH 7.4, 37°C, 30rpm up to 600hours. At different time intervals, SIM was quantified by spectrophotometry (238nm). For characterization of the biomaterial components, it was performed Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy (SEM), optical profilometry, and atomic force microscopy. Biocompatibility analyses were performed by MTS colorimetric assay on murine fibroblasts L929, human gingival fibroblasts (HGFs), and stem cells from human exfoliated deciduous teeth (SHEDs). Absorbance was measured at 490nm, and percentages of viable cells were calculated in relation to positive control (Ti). SEM images were obtained to verify cell adhesion and morphology. One-way ANOVA followed by Tukey's post hoc test was applied (P<0.05) for statistical analyses. SIM release was slow and continuous, reaching about 21% of the incorporated SIM after 600hours. Topographical analyses revealed success in coating Ti disks with PLGA incorporating SIM. Regarding biocompatibility test, Ti+PLGA+SIM0.6% showed the highest percentage of L929 viability at days 3 and 7. There was no significant difference for Ti, Ti+PLGA, and Ti+PLGA+SIM0.6% groups on cell viability of both SHEDs and HGFs at days 3 and 7. SEM corroborates that SHEDs and HGFs were able to adhere and proliferate on Ti, Ti+PLGA, and Ti+PLGA+SIM0.6% surfaces. A slow and controlled release of SIM was achieved, attributed to a diffusional mass transfer mechanism. Moreover, a homogenous coating topography was obtained. Additionally, 0.6% SIM incorporated into PLGA coating improved fibroblasts L929 viability compared to titanium or PLGA. Also, 0.6% SIM incorporated into PLGA promoted cell viability of about 100% for HGFs and approximately 150% for human mesenchymal stem cells. Therefore, this study allows to consider the use of PLGA-coated titanium incorporating SIM as a biofunctionalized abutment for dental implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call