Abstract

Bacteria induced wound infection has become fatal healthcare issues needed to be resolved urgently. It is of vital importance to develop multifunctional therapeutic platforms to fight against increased bacterial antibiotic resistance. Herein, a titanium carbide (MXene)/zeolite imidazole framework-8 (ZIF-8)/polylactic acid (PLA) composite membrane (MZ-8/PLA) was fabricated through in-situ growth of ZIF-8 on MXene and the subsequent electrospinning process. It indicated MZ-8 can generate singlet oxygen and hyperthermia at photothermal (PTT) convention efficiency of 80.5% with bactericidal rate of more than 99.0%. In addition, MZ-8 showed remarkable antitumor efficiency in vitro and in vivo based on the combined photodynamic/photothermal therapy. Theoretical calculation illustrated MZ-8 could improve the laser activation process by acceleration of intermolecular charge transfer, reducing excitation energy, stabilizing excited states and increasing intersystem crossing rate. After incorporated into electrospun scaffolds, MZ-8/PLA exhibited potent PTT and photodynamic therapy (PDT) properties under 808 nm laser irradiation. The antibacterial rates of MZ-8/PLA were up to 99.9% and 99.8% against Escherichia coli and Methicillin-resistant staphylococcus aureus, respectively. In-vivo experimental results further confirmed that MZ-8/PLA can accelerate bacteria infected wound healing without observable resistance. This work opens a new avenue to design promising platforms for fighting against extremely drug resistant bacterial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.