Abstract
In this study, titanium carbide (TiC) coatings were grown on the surface of a spheroidal graphite cast iron (SGI) via thermo-reactive diffusion (TRD) using powder-pack processing at 800 °C, 850 °C and 900 °C for 4 h. The TiC coatings obtained on the SGI were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), surface profilometry, microhardness, VDI adhesion testing, wear testing, and electrochemical corrosion testing. Depending on the TRD temperature, continuous, crack-free, and smooth TiC coatings of 5–11 μm thickness and 27.96–32.45 GPa hardness were obtained on the surface. The high chemical stability, high hardness, and good adhesion strength of TiC coatings resulted in a reduced friction, high wear resistance, and superior corrosion resistance compared to the untreated sample. Delamination and oxidation assisted abrasive wear transformed into oxidation-assisted adhesive wear in the coated samples. Galvanic corrosion was dominant in untreated SGI, while homogeneous corrosion occurred in the coated samples. TiC coatings grown using TRD have the potential to be used in engineering components exposed to tribo-corrosive conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.