Abstract

Titanium is a highly biocompatible material and very osteogenic in vivo. However, how titanium regulates osteoblast activity to promote bone formation is incompletely characterized. We, therefore, attempted to get more information by using microRNA (miRNA) microarray techniques to investigate translation regulation in osteoblasts grown on titanium disks. The miRNA oligonucleotide microarray provides a novel method to carry out genome-wide miRNA profiling in human samples. By using miRNA microarrays containing 329 probes designed from the human miRNA sequence, several miRNA were identified in osteoblast-like cell line (MG 63) grown on titanium disks. There were 13 upregulated miRNAs (ie, mir-23a, mir-222, mir-523, mir-22, mir-23b, mir-143, mir-377, mir-24, mir-422b, mir-26a, mir-29a, mir-17-5p, mir-182) and 2 down-regulated miRNAs (ie, mir-187, mir-339). The data reported are, to our knowledge, the first study on translation regulation in osteoblasts exposed to titanium. The data can be relevant to understand better the molecular mechanism of osteoblast activation and as a model for comparing other materials with similar clinical effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.