Abstract

Calcium sulfate (CaS) is a highly biocompatible material and enhances bone formation in vivo. However, how CaS alters osteoblast activity to promote bone formation is incompletely understood. We therefore investigated the translation regulation in osteoblasts exposed to CaS by using microRNA microarray techniques. Transduction, transcription, and translation are the three levels of regulation of cell activity. Recently, a new type of translation regulation has been identified: RNA interference (RNAi). RNAi is a process in which microRNA, (miRNA), that is, noncoding RNAs of 19-23 nucleotides can induce sequence-specific mRNA degradation and/or translational repression. The human genome encodes a few hundred miRNAs that can post-transcriptionally repress thousands of genes. The miRNA oligonucleotide microarray provides a novel method of carrying out genome-wide miRNA profiling in human samples. By using miRNA microarrays containing 329 probes designed from Human miRNA sequences, we identified in osteoblast-like cells line (MG-63) cultured with CaS (Surgiplaster, Classimplant, Roma, Italy) several miRNA whose expression is significantly modified. The data reported are, to our knowledge, the first study on translation regulation in osteoblasts exposed to CaS. They could be relevant to a better understanding of the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.