Abstract

Saturn's large moon Titan is unique among planetary satellites in that it possesses a thick atmosphere and a haze layer that is opaque to visible light. This haze is believed to be composed of organic compounds produced by the photolysis of methane. It has been suggested that the photochemical products of methane photolysis, primarily ethane, would “rain out” over time and may produce reservoirs of liquid hydrocarbons on Titan's surface. Such material would appear very dark, with an albedo ≤0.02 (Khare et al. 1990, Bull. Am. Astron. Soc.22, 1033). Such low-albedo regions have not been previously detected on Titan's surface. Here we report observations of Titan at a resolution of 0.04 arcsec (0.02 arcsec/pixel) using the technique of speckle imaging from the 10-m Keck I Telescope. By observing Titan at specific infrared wavelengths which are windows through its atmosphere, we have made both an albedo map of Titan's surface at 1.6 and 2.1 μm and an estimate of Titan's haze optical depth at these wavelengths. We clearly distinguish low-albedo features (reflectance <0.05) on Titan's surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call