Abstract

Phenotypic flexibility in organ size is common in animals during fasting and is especially remarkable in birds during their migrations. This phenotypic flexibility is often explained in relation to changes in functional demands in response to environmental change. A new hypothesis suggests that the rate of tissue-specific degradation during fasting is related to the tissue-specific rate of protein turnover. This hypothesis predicts allometric scaling of tissue-specific protein turnover rate across species and so provides estimates of the rate of tissue degradation for a specific tissue in relation to other tissues within a given animal. We used carbon isotopic incorporation rate as a proxy for protein turnover and then predicted that organ size changes during fasting in migratory birds would occur in the following rank order from most to least reduced: small intestine, liver, kidney, gizzard, heart, flight, and leg muscles. Furthermore, the hypothesis that protein turnover determines the degree of tissue-specific mass loss during fasting predicts that rate of change is independent of activity levels of tissues. In the following contribution we discuss the proposed hypothesis in the context of other competing hypotheses and review its support given the existing data on tissue turnover and mass change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.