Abstract

Cells of origin in cancer determine tumor phenotypes, but whether lineage-defining transcription factors might influence tissue specificity of tumorigenesis among organs with similar developmental traits are unknown. We demonstrate here that tumor development and progression markedly differ in lung and thyroid targeted by Braf mutation in Nkx2.1CreERT2 mice heterozygous for Nkx2-1. In absence of tamoxifen, non-induced Nkx2.1CreERT2;BrafCA/+ mutants developed multiple full-blown lung adenocarcinomas with a latency of 1-3months whereas thyroid tumors were rare and constrained, although minute BrafCA activation documented by variant allele sequencing was similar in both tissues. Induced oncogene activation accelerated neoplastic growth only in the lungs. By contrast, NKX2-1+ progenitor cells were equally responsive to constitutive expression of mutant Braf during lung and thyroid development. Both lung and thyroid cells transiently downregulated NKX2-1 in early tumor stages. These results indicate that BRAFV600E-induced tumorigenesis obey organ-specific traits that might be differentially modified by a shared lineage factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.