Abstract

A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)–l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)–apatite (Ap) coated titanium plate. The FGF-2–AsMg–Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2–AsMg–Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs), and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibitedin vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2–AsMg–Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call