Abstract

Lambda-cyhalothrin (LCT) is a widely used pyrethroid with neurotoxicity. However, little is known about the toxicokinetics of LCT in reptiles. In this study, the absorption, distribution, metabolism and excretion of LCT in Chinese lizards (Eremias Argus) were determined following a single dose (10 mg kg−1) treatment. In the liver, brain, gonads and skin, LCT levels peaked within several hours and then decreased rapidly. However, the concentration of LCT gradually increased in the fat tissue. More than 90% of the LCT dose was excreted in the faeces. One LCT metabolite, 3-phenoxybenzoic acid (PBA), was detected in lizard plasma and tissues. PBA preferentially accumulates in the brain and plasma. The half-life of PBA in the brain was 3.2 days, which was 35.4-fold greater than that of LCT. In the plasma, the concentration of PBA was significantly higher than that of LCT. The bioaccumulation of LCT in tissues was enantioselective, and the enantiomeric fractions (EF) ranged from 0.72 to 0.26. The preferential accumulation of enantiomers changed according to exposure time, but the reasons behind this phenomenon were not clear. For pathological analysis, vacuolation of the cytoplasm and large areas of necrosis were observed in the liver sections after 168 h of dosing. The liver tissues exhibited both decreases in the hepatosomatic index and histopathological lesions during the exposure period. In this study, the effect concentration of LCT in lizards was 200-fold lower than its LD50 value used in risk assessments for birds. These results may provide additional information for the risk assessment of LCT for reptiles and indicate that birds may not be an ideal surrogate for reptile toxicity evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.