Abstract

High content of mineral salts reduces crop yields. Agricultural areas are being reduced due to the secondary salinization of land. Wheat is one of the main crops, however, wheat is a type of plant that is sensitive to the toxic effects of mineral salts. Therefore, the identification of cytological and biochemical markers for determining resistant and sensitive wheat varieties to abiotic stress caused by the toxic effects of mineral salts is one of the important tasks of agriculture. Methods of fluorescence, cytophotometry, electrophoresis, and light-optical microscopy produced suitable cytological markers for creating a test system for the early diagnosis of wheat sensitivity to the tested salts. Different wheat genotypes of Triticum aestivum Host. (varieties Agata, Uchitel’, and Zhemchuzhina Povolzh’ya) underwent treatment to investigate their reaction to the toxic effects of sodium chloride and sodium sulfate. The varieties responded differently to the presence of the salts; these were reflected in changes in biometric data, the passage of the cell cycle, features of ROS accumulation, and a quantitative assessment of the viability of seedling cells. In the genotypes sensitive to sodium chloride and sodium sulfate (varieties Zhemchuzhina Povolzh’ya and Uchitel’), tissue damage was observed in root cells under toxic effects, while in the resistant genotype (variety Agata) cell damage was minimal. The developed complex of intravital markers of various wheat genotypes in the early development stages can be effectively used to characterize wheat with different tolerance to chloride and sulfate salinization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call