Abstract
Thermal ablation therapy, including radiofrequency ablation (RFA) and microwave ablation (MWA), is considered the optimal locoregional treatment for unresectable early-stage hepatocellular carcinomas (HCCs). Percutaneous image-guided ablation is a minimally invasive treatment that is being increasingly performed because it achieves good clinical outcomes with a lower risk of complications. However, the physics and principles of RFA and MWA markedly differ. Although percutaneous thermal ablation under image guidance may be challenging in HCC cases with limited access or a risk of thermal injury, a number of ablative techniques, each of which may be advantageous and disadvantageous for individual cases, are available. Furthermore, even when a HCC is eligible for ablation based on tumor selection and technical factors, additional patient factors may have an impact on whether it is the appropriate treatment choice. Therefore, a basic understanding of the advantages and limitations of each ablation device and imaging guidance technique, respectively, is important. We herein provide an overview of the basic principles of tissue heating in thermal ablation, clinical and laboratory parameters for ablation therapy, preprocedural management, imaging assessments of responses, and early adverse events. We also discuss associated challenges and how they may be overcome using optimized imaging techniques.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have