Abstract

Understanding cell fate decision-making during complex biological processes is an open challenge that is now aided by high-resolution single-cell sequencing technologies. Specifically, it remains challenging to identify and characterize transition states corresponding to “tipping points” whereby cells commit to new cell states. Here, we present a computational method that takes advantage of single-cell transcriptomics data to infer the stability and gene regulatory networks (GRNs) along cell lineages. Our method uses the unspliced and spliced counts from single-cell RNA sequencing data and cell ordering along lineage trajectories to train an RNA splicing multivariate model, from which cell-state stability along the lineage is inferred based on spectral analysis of the model’s Jacobian matrix. Moreover, the model infers the RNA cross-species interactions resulting in GRNs and their variation along the cell lineage. When applied to epithelial-mesenchymal transition in ovarian and lung cancer-derived cell lines, our model predicts a saddle-node transition between the epithelial and mesenchymal states passing through an unstable, intermediate cell state. Furthermore, we show that the underlying GRN controlling epithelial-mesenchymal transition rearranges during the transition, resulting in denser and less modular networks in the intermediate state. Overall, our method represents a flexible tool to study cell lineages with a combination of theory-driven modeling and single-cell transcriptomics data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.