Abstract

Strain engineering of perovskite quantum dots (pQDs) enables widely tunable photonic device applications. However, manipulation at the single-emitter level has never been attempted. Here, we present a tip-induced control approach combined with tip-enhanced photoluminescence (TEPL) spectroscopy to engineer strain, bandgap, and the emission quantum yield of a single pQD. Single CsPbBrxI3-x pQDs are clearly resolved through hyperspectral TEPL imaging with ∼10 nm spatial resolution. The plasmonic tip then directly applies pressure to a single pQD to facilitate a bandgap shift up to ∼62 meV with Purcell-enhanced PL increase as high as ∼105 for the strain-induced pQD. Furthermore, by systematically modulating the tip-induced compressive strain of a single pQD, we achieve dynamical bandgap engineering in a reversible manner. In addition, we facilitate the quantum dot coupling for a pQD ensemble with ∼0.8 GPa tip pressure at the nanoscale estimated theoretically. Our approach presents a strategy to tune the nano-opto-electro-mechanical properties of pQDs at the single-crystal level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.